Sufficient Conditions for the Convergence of Multipoint Hermite-padé Approximants of Nikishin Systems

نویسنده

  • U. FIDALGO
چکیده

We consider simultaneous approximation of Nikishin systems of functions by means of rational vector functions which are constructed interpolating along a prescribed table of points. We give sufficient conditions for the uniform convergence of such approximants with a geometric rate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How well does the Hermite-Padé approximation smooth the Gibbs phenomenon?

In order to reduce the Gibbs phenomenon exhibited by the partial Fourier sums of a periodic function f , defined on [−π, π], discontinuous at 0, Driscoll and Fornberg considered so-called singular Fourier-Padé approximants constructed from the Hermite-Padé approximants of the system of functions (1, g1(z), g2(z)), where g1(z) = log(1 − z) and g2(z) is analytic, such that Re (g2(e)) = f(t). Conv...

متن کامل

Rate of Convergence of Generalized Hermite-padé Approximants of Nikishin Systems

We study the rate of convergence of interpolating simultaneous rational approximations with partially prescribed poles to so called Nikishin systems of functions. To this end, a vector equilibrium problem in the presence of a vector external field is solved which is used to describe the asymptotic behavior of the corresponding second type functions which appear. 1. Generalized Hermite-Padé appr...

متن کامل

Strong Asymptotics of Hermite-padé Approximants for Angelesco Systems

In this work type II Hermite-Padé approximants for a vector of Cauchy transforms of smooth Jacobi-type densities are considered. It is assumed that densities are supported on mutually disjoint intervals (an Angelesco system with complex weights). The formulae of strong asymptotics are derived for any ray sequence of multi-indices.

متن کامل

Convergence of Diagonal Padé Approximants for a Class of Definitizable Functions

Convergence of diagonal Padé approximants is studied for a class of functions which admit the integral representation F(λ) = r1(λ) R 1 −1 tdσ(t) t−λ + r2(λ), where σ is a finite nonnegative measure on [−1, 1], r1, r2 are real rational functions bounded at ∞, and r1 is nonnegative for real λ. Sufficient conditions for the convergence of a subsequence of diagonal Padé approximants of F on R \ [−1...

متن کامل

Strong asymptotics of orthogonal polynomials with varying measures and Hermite–Pad e approximants

The strong asymptotic behaviour of orthogonal polynomials with respect to a general class of varying measures is given for the case of the unit circle and the real line. These results are used to obtain certain asymptotic relations for the polynomials involved in the construction of Hermite–Pad e approximants of a Nikishin system of functions. c © 1998 Elsevier Science B.V. All rights reserved....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005